Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Acta Physiologica Sinica ; (6): 279-290, 2023.
Article in Chinese | WPRIM | ID: wpr-981005

ABSTRACT

Circadian clock is an internal mechanism evolved to adapt to cyclic environmental changes, especially diurnal changes. Keeping the internal clock in synchronization with the external clock is essential for health. Mismatch of the clocks due to phase shift or disruption of molecular clocks may lead to circadian disorders, including abnormal sleep-wake cycles, as well as disrupted rhythms in hormone secretion, blood pressure, heart rate, body temperature, etc. Long-term circadian disorders are risk factors for various common critical diseases such as metabolic diseases, cardiovascular diseases, and tumor. To prevent or treat the circadian disorders, scientists have conducted extensive research on the function of circadian clocks and their roles in the development of diseases, and screened hundreds of thousands of compounds to find candidates to regulate circadian rhythms. In addition, melatonin, light therapy, exercise therapy, timing and composition of food also play a certain role in relieving associated symptoms. Here, we summarized the progress of both drug- and non-drug-based approaches to prevent and treat circadian clock disorders.


Subject(s)
Circadian Rhythm , Circadian Clocks , Melatonin/physiology
2.
Asian Journal of Andrology ; (6): 184-191, 2023.
Article in English | WPRIM | ID: wpr-971016

ABSTRACT

The circadian clock is an evolutionary molecular product that is associated with better adaptation to changes in the external environment. Disruption of the circadian rhythm plays a critical role in tumorigenesis of many kinds of cancers, including prostate cancer (PCa). Integrating circadian rhythm into PCa research not only brings a closer understanding of the mechanisms of PCa but also provides new and effective options for the precise treatment of patients with PCa. This review begins with patterns of the circadian clock, highlights the role of the disruption of circadian rhythms in PCa at the epidemiological and molecular levels, and discusses possible new approaches to PCa therapy that target the circadian clock.


Subject(s)
Humans , Male , Carcinogenesis , Circadian Clocks/physiology , Circadian Rhythm/physiology , Prostatic Neoplasms/physiopathology
3.
Journal of Zhejiang University. Science. B ; (12): 529-546, 2022.
Article in English | WPRIM | ID: wpr-939825

ABSTRACT

Mammalian bone is constantly metabolized from the embryonic stage, and the maintenance of bone health depends on the dynamic balance between bone resorption and bone formation, mediated by osteoclasts and osteoblasts. It is widely recognized that circadian clock genes can regulate bone metabolism. In recent years, the regulation of bone metabolism by non-coding RNAs has become a hotspot of research. MicroRNAs can participate in bone catabolism and anabolism by targeting key factors related to bone metabolism, including circadian clock genes. However, research in this field has been conducted only in recent years and the mechanisms involved are not yet well established. Recent studies have focused on how to target circadian clock genes to treat some diseases, such as autoimmune diseases, but few have focused on the co-regulation of circadian clock genes and microRNAs in bone metabolic diseases. Therefore, in this paper we review the progress of research on the co-regulation of bone metabolism by circadian clock genes and microRNAs, aiming to provide new ideas for the prevention and treatment of bone metabolic diseases such as osteoporosis.


Subject(s)
Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Mammals/genetics , MicroRNAs/genetics , Osteogenesis/genetics , Osteoporosis/genetics
4.
Acta Physiologica Sinica ; (6): 443-460, 2022.
Article in Chinese | WPRIM | ID: wpr-939579

ABSTRACT

The mammalian internal circadian clock system has been evolved to adapt to the diurnal changes in the internal and external environment of the organism to regulate diverse physiological functions, such as the sleep-wake cycle and feeding rhythm, thereby coordinating the rhythmic changes of energy demand and nutrition supply in each diurnal cycle. The circadian clock regulates glucose metabolism, lipid metabolism, and hormones secretion in diverse tissues and organs, including the liver, skeletal muscle, pancreas, heart, and vessels. As a special "organ" of the host, the gut microbiota, together with the intestinal microenvironment (tissues, cells, and metabolites) in a co-evolutionary process, constitutes a micro-ecosystem and plays an important role in the process of nutrient digestion and absorption in the intestine of the host. In recent years, accumulating evidence indicates that the compositions, quantities, colonization, and functional activities of the gut microbiota exhibit significant circadian variations, which are closely related to the changes of various physiological functions under the regulation of host circadian clock system. In addition, several studies have shown that the gut microbiota can produce many important metabolites such as the short-chain fatty acids through the degradation of indigestive dietary fibers. A portion of gut microbiota-derived metabolites can regulate the circadian clock system and metabolism of the host. This article mainly discusses the interaction between the host circadian clock system and the gut microbiota, and highlights its influence on energy metabolism of the host, providing a novel clues and thought for the prevention and treatment of metabolic diseases.


Subject(s)
Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Ecosystem , Energy Metabolism , Gastrointestinal Microbiome/physiology , Lipid Metabolism/physiology , Mammals
5.
Chinese Journal of Stomatology ; (12): 481-489, 2022.
Article in Chinese | WPRIM | ID: wpr-935890

ABSTRACT

Circadian rhythm is an internal autonomous timing mechanism formed by the body in response to changes of external environment. It participates in the regulations of various physiological activities, affecting the formation and outcome of various diseases in the human body. This paper summarizes the changes of local tissue rhythms in common disease states, such as oral and maxillofacial malformations, inflammation and malignant tumors. The importance of circadian clock system to the activities of oral and maxillofacial tissues are dialectically analyzed, mainly on the mechanisms of action in maintaining oral health and in affecting the processes of common oral diseases and oral-related systemic diseases. At the same time, chronological therapy and new strategies of prevention and treatment for oral-related diseases based on the changes in tissue rhythm are summarized and prospected to provide new ideas for maintaining oral and systemic health.


Subject(s)
Humans , Circadian Clocks/physiology , Circadian Rhythm/physiology , Inflammation , Mouth Diseases , Neoplasms
6.
Arq. bras. oftalmol ; 84(2): 186-190, Mar,-Apr. 2021. tab, graf
Article in English | LILACS | ID: biblio-1153112

ABSTRACT

ABSTRACT Acute retinal pigment epitheliitis (ARPE) is an idiopathic, self-limiting inflammatory retinal disorder that particularly affects healthy young individuals. The characteristic fundoscopic appearance of the acute retinal pigment epitheliitis includes a fine pigment stippling surrounded by a yellow-white hypopigmented halos in the macula. Although the exact pathogenesis of the disease remains unknown, some reports have suggested a relationship between a viral infection and acute retinal pigment epitheliitis. Acute retinal pigment epitheliitis is a rare disorder, and only single case reports or case series are found in the literature. The clinical and demographic characteristics of patients with this disease are not fully understood because of its rarity. In this study, we searched the literature to collect clinical and demographic features of the reported cases. We detail the characteristics of acute retinal pigment epitheliitis were pointed and discuss the pathogenesis of the disease.(AU)


RESUMO A epitelite pigmentar retiniana aguda (EPRA) é uma doença inflamatória idiopática e autolimitada da retina, que afeta especialmente indivíduos jovens e saudáveis. À fundoscopia, a aparência característica dessa entidade é de um pontilhado fino do pigmento, cercado de halos hiperpigmentados branco-amarelados na mácula. A patogênese exata da doença ainda é desconhecida, mas alguns relatos apontam uma relação entre epitelite pigmentar retiniana aguda e infecções virais. A epitelite pigmentar retiniana aguda é uma condição rara e na literatura há apenas relatos de casos individuais ou séries de casos. As características clínicas e demográficas da doença não são totalmente compreendidas, devido à sua raridade. Para este relato, foi feita uma busca na literatura para coletar os dados clínicos e demográficos dos casos relatados. Finalmente, são apontadas as características da epitelite pigmentar retiniana aguda e discute-se a patogênese da doença.(AU)


Subject(s)
Humans , Retinitis Pigmentosa/pathology , Epithelium/pathology , Retinal Pigments , Visual Acuity , Retinal Photoreceptor Cell Outer Segment , Circadian Clocks , c-Mer Tyrosine Kinase
7.
Acta Physiologica Sinica ; (6): 734-744, 2021.
Article in Chinese | WPRIM | ID: wpr-921276

ABSTRACT

Circadian clock is an internal autonomous time-keeping system, including central clocks located in the suprachiasmatic nucleus (SCN) and peripheral clocks. The molecular circadian clock consists of a set of interlocking transcriptional-translational feedback loops that take the clock-controlled genes 24 h to oscillate. The core mechanism of molecular circadian clock is that CLOCK/BMAL1 dimer activates the transcription of cryptochromes (CRYs) and Periods (PERs), which act as transcriptional repressors of further CLOCK/BMAL1-mediated transcription. In addition to this basic clock, there is an additional sub-loop of REV-ERBα and RORα regulating the transcription of BMAL1. Approximately 80% protein-coding genes demonstrate significant rhythmicity. The earth rotation is responsible for the generation of the daily circadian rhythms. To coordinate metabolic balance and energy availability, almost all organisms adapt to the rhythm. Studies have shown that circadian clock integrating with metabolic homeostasis increases the efficiency of energy usage and coordinates with different organs in order to adapt to internal physiology and external environment soon. As the central organ of metabolism, the liver performs various physiological activities nearly all controlled by the circadian clock. There are multiple interactive regulation mechanisms between the circadian clock and the regulation of liver metabolism. The misalignment of metabolism with tissue circadian is identified as a high-risk factor of metabolic diseases. This article reviews the recent studies on circadian physiological regulation of liver glucose, lipid and protein metabolism and emphasizes oscillation of mitochondrial function. We also take an outlook for new methods and application of circadian clock research in the future.


Subject(s)
CLOCK Proteins , Circadian Clocks/genetics , Circadian Rhythm , Liver , Suprachiasmatic Nucleus
8.
Journal of Central South University(Medical Sciences) ; (12): 1177-1186, 2021.
Article in English | WPRIM | ID: wpr-922601

ABSTRACT

OBJECTIVES@#High fat-induced podocyte injury is one of the important factors leading to obesity related nephropathy (ORG), but the mechanism is not clear. This study aims to explore the mechanism of period circadian clock 3 (PER3) in the oxidative stress and inflammation induced by palmitic acid (PA) in podocytes.@*METHODS@#The C57BL/6J mice were fed with chow and high-fat diet for 16 weeks. The PER3 expression in kidney tissues were detected in the normal body weight group and the obesity group. The PER3 mRNA and protein expression were detected after the podocytes were induced with different concentrations (0, 50, 150 and 300 μmol/L) of PA for 48 h. The PER3 mRNA and protein expression were detected after the podocytes were induced with 150 μmol/L PA for 0, 24, 36, and 48 h. Triglyceride (TG) levels were examined in the PA group, the adenovirus (ad)-PER3+PA group, and the siRNA-PER+PA group after the podocytes were transfected by Ad-PER3 or small interfering RNA (siRNA)-PER3 for 48 h and subsequently were induced with 150 μmol/L PA for 48 h. The differential gene expression was detected using RNA sequencing (RNA-seq) after podocytes were transfected by siRNA-PER3 (siRNA-PER3 group) and siRNA-control (siRNA-control group), respectively. The mRNA levels of nephrin, podocin, podocalyxin, podoplanin, superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), catalase (CAT), and the levels of malondialdehyde (MDA), glutathione (GSH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and interleukin-2 (IL-2) were detected after podocytes were transfected with Ad-PER3 or Ad-control for 48 h and then they were induced by 150 μmol/L PA for 48 h.@*RESULTS@#The PER3 was down-regulated in the obesity group compared with the normal body weight group (@*CONCLUSIONS@#PER3 can decrease the PA-induced oxidative stress and inflammatory factor secretion via inhibiting the lipogenesis in podocytes.


Subject(s)
Animals , Mice , Circadian Clocks , Mice, Inbred C57BL , Oxidative Stress , Palmitic Acid/toxicity , Podocytes/metabolism
9.
Rev. bras. neurol ; 56(1): 11-18, jan.-mar. 2020. ilus, graf, tab
Article in English | LILACS | ID: biblio-1095930

ABSTRACT

The sleep-wake cycle that is circadian rhythm may have different patterns according to sex, environment and genetics determinants. This chronological cycle type, chronotype, may be populational expressed by the extremes, early or later going to bed and waking up, in a continuum. The first, the Morning-type individuals (the lark) and the later, the Evening types (the owl). Between the two extremes, there is the majority of these chronotypes ­ the intermediate ones. These patterns may be classified according to the questionnaires such as Horne and Ostberg Morningness/ Eveningness Questionnaire (MEQ) and the Munich Chrono Type Questionnaire (MCTQ). The rural population tends to be Morning-type, as well as children and younger women, more than men. The Morning person tends to be more healthy than the Evening ones who are more prone to diseases, as depression and metabolic syndrome. This basic knowledge may be helpful to patient's counseling and management: to avoid mismatch of circadian physiology and social duties / sleep. This circadian desynchrony can increase the risk of diseases, consequently there is a need to chrono-medicine into current treatment strategies.


O ciclo sono-vigília, que é um ritmo circadiano, pode ter padrões diferentes de acordo com os determinantes sexuais, ambientais e genéticos. Esse tipo de ciclo cronológico, cronótipo, pode ser expresso em termos populacionais pelos extremos, indo cedo ou mais tarde para a cama ou saindo dela, em um continuum. O primeiro, os indivíduos do tipo Manhã (a cotovia) e o posterior, os tipos da Tarde (a coruja). Entre os dois extremos, há a maioria desses cronotipos - os intermediários. Esses padrões podem ser classificados de acordo com questionários como o Horne e Ostberg Morningness/Eveningness Questionnaire (MEQ) e o Munich Chrono Type Questionnaire (MCTQ). A população rural tende a ser do tipo matutino, assim como crianças e mulheres mais jovens, mais que os homens.A pessoa da manhã tende a ser mais saudável do que as da noite, mais propensa a doenças, como depressão e síndrome metabólica. Esse conhecimento básico pode ser útil para o aconselhamento e tratamento dos pacientes: para evitar incompatibilidade entre a fisiologia circadiana e os deveres sociais / sono. Essa dessincronia circadiana pode aumentar o risco de doenças, consequentemente, é necessário a cronomedicina nas atuais estratégias de tratamento.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Sleep/physiology , Biological Clocks , Circadian Rhythm/physiology , Sleep Stages , Sex Factors , Surveys and Questionnaires , Actigraphy , Circadian Clocks/physiology
10.
Medicina (B.Aires) ; 79(1,supl.1): 44-50, abr. 2019. ilus, tab
Article in Spanish | LILACS | ID: biblio-1002604

ABSTRACT

El sueño adecuado es necesario para el desarrollo sináptico y la maduración cerebral, un sueño de mala calidad tiene efectos perjudiciales en las funciones cognitivas, de atención, memoria y conducta de los niños. La preocupación sobre la alta prevalencia de los problemas del sueño es amplia en todo el mundo; las consecuencias de estos problemas son incluso más importantes en los niños portadores de trastornos del neurodesarrollo; estos niños a menudo tienen dificultades de inicio y mantenimiento del sueño y despertares nocturnos frecuentes que afectan a sus problemas de conducta. El propósito de este escrito es revisar el estado del arte de los problemas del sueño en los niños con trastornos del neurodesarrollo. En este punto, es importante tener en cuenta el ritmo circadiano, un reloj que genéticamente dirige los ritmos celulares de transcripción, traslación y metabolismos. Este reloj se combina con el ambiente diurno y nocturno coordinando estos mecanismos durante los ciclos luz/oscuridad, sueño/vigilia, frío/calor, ingesta/ayuno, tanto diariamente como en las diferentes estaciones. En conclusión, los problemas del sueño son un factor condicionante de la evolución y calidad de vida de los niños con trastornos del neurodesarrollo, que debe ser tenido en cuenta en todos los casos y ocupar un lugar preferente tanto en la etapa diagnóstica como en la terapéutica.


Adequate sleep is of critical need for a typical synaptic development and brain maturation, a poor quality sleep can have detrimental effects on children's' cognitive attention, memory, mood regulation, and behavior functions. Great concern has been voiced out regarding the high prevalence of poor sleep in children worldwide, the effects of poor sleep may be even more pronounced in children with neurodevelopmental disorders; these children often have difficulties with falling and staying asleep and with night awakenings, this has a strong association with daytime behavior problems. The purpose of this article is to provide an overview of the state of the science of sleep in children with a neurodevelopmental disorder. In this context, it is important to take the circadian cycle into account, a genetically encoded clock that drives cellular rhythms of transcription, translation and metabolism. The circadian clock interacts with the diurnal and nocturnal environment that also drives transcription and metabolism during light/dark, sleep/wake, hot/cold and feast/fast daily and seasonal cycles In conclusion, the sleep problems are a conditioning factor in the evolution and quality of life of children with neurodevelopmental disorders that must be taken into account in all cases and occupy a preferential place in both the diagnostic and the therapeutic stages.


Subject(s)
Humans , Child , Sleep Wake Disorders/physiopathology , Neurodevelopmental Disorders/physiopathology , Attention Deficit Disorder with Hyperactivity/physiopathology , Sleep Wake Disorders/therapy , Circadian Rhythm/physiology , Smith-Magenis Syndrome/physiopathology , Circadian Clocks , Autism Spectrum Disorder/physiopathology , Sleep Hygiene/physiology
11.
Acta Physiologica Sinica ; (6): 783-791, 2019.
Article in Chinese | WPRIM | ID: wpr-777132

ABSTRACT

Circadian rhythms widely exist in living organisms, and they are regulated by the biological clock. Growing evidence has shown that circadian rhythms are tightly related to the physiological function of the cardiovascular system, including blood pressure, heart rate, metabolism of cardiomyocytes, function of endothelial cells, and vasoconstriction and vasodilation. In addition, disruption of circadian rhythms has been considered as one of the important risk factors for cardiovascular diseases, such as myocardial infarction. This review summarizes the recent research advances in the relationship between circadian clock and cardiovascular diseases, hoping to improve treatment strategies for patients with cardiovascular diseases according to the theory of biological clock.


Subject(s)
Humans , Blood Pressure , Cardiovascular Diseases , Circadian Clocks , Circadian Rhythm , Endothelial Cells , Cell Biology , Heart Rate , Myocytes, Cardiac , Metabolism , Vasoconstriction , Vasodilation
12.
Clinical and Experimental Reproductive Medicine ; : 76-86, 2019.
Article in English | WPRIM | ID: wpr-763354

ABSTRACT

OBJECTIVE: This study was performed to explore the possibility that each oocyte and its surrounding cumulus cells might have different genetic expression patterns that could affect human reproduction. METHODS: Differential gene expression analysis was performed for 10 clusters of cumulus cells obtained from 10 cumulus-oocyte complexes from 10 patients. Same procedures related to oocyte maturation, microinjection, and microarray analyses were performed for each group of cumulus cells. Two differential gene expression analyses were performed: one for the outcome of clinical pregnancy and one for the outcome of live birth. RESULTS: Significant genes resulting from these analyses were selected and the top 20 affected pathways in each group were analyzed. Circadian entrainment is determined to be the most affected pathway for clinical pregnancy, and proteoglycans in cancer pathway is the most affected pathway for live birth. Circadian entrainment is also amongst the 12 pathways that are found to be in top 20 affected pathways for both outcomes, and has both lowest p-value and highest number of times found count. CONCLUSION: Although further confirmatory studies are necessary, findings of this study suggest that these pathways, especially circadian entrainment in cumulus cells, may be essential for embryo development and pregnancy.


Subject(s)
Female , Humans , Pregnancy , Circadian Clocks , Cumulus Cells , Embryonic Development , Gene Expression , Granulosa Cells , Infertility , Live Birth , Microarray Analysis , Microinjections , Oocytes , Ovarian Follicle , Proteoglycans , Reproduction , Reproductive Techniques, Assisted
13.
Chinese Journal of Biotechnology ; (12): 795-804, 2019.
Article in Chinese | WPRIM | ID: wpr-771330

ABSTRACT

The cyanobacterial circadian clock has three relatively independent parts: the input path, the core oscillator, and the output path. The core oscillator is composed of three clock proteins: KaiA, KaiB, and KaiC. The interactions among these three proteins generate a rhythmic signal and convey the input signals to the output signals to maintain the accuracy and stability of the oscillation of downstream signals. Based on the cyanobacterial circadian clock and the structure, function, and interaction of the clock proteins of the core oscillator, combining the recent results from our laboratory, this review summarized the recent progresses of the molecular mechanism of KaiA in regulating KaiC's enzymatic activity, mediating phase reset of the oscillator, and competing with CikA for the binding site of KaiB.


Subject(s)
Bacterial Proteins , Genetics , Metabolism , Circadian Clocks , Genetics , Circadian Rhythm Signaling Peptides and Proteins , Metabolism , Cyanobacteria , Genetics , Enzyme Activation , Genetics
14.
International Neurourology Journal ; : 258-264, 2019.
Article in English | WPRIM | ID: wpr-785856

ABSTRACT

Shift workers often experience problems associated with circadian disruption associated with artificial light at night and nocturia is commonly noted in night-shift workers. Nocturia associated with circadian disruption is due to increased urine production of the kidney and decreased storage function of the bladder. A recent discovery of peripheral clock genes in the bladder and their role in contractile property of the bladder support that micturition is closely related to the circadian rhythm. Moreover, there are clinical studies showed that shift workers more often experienced nocturia due to circadian disruption. However, comparing with other health problems, concerns on nocturia and voiding dysfunction associated with circadian disruption are insufficient. Therefore, further studies about voiding dysfunction associated with the circadian disruption in shift workers are necessary.


Subject(s)
Circadian Clocks , Circadian Rhythm , Kidney , Nocturia , Urinary Bladder , Urination
15.
Experimental Neurobiology ; : 344-349, 2018.
Article in English | WPRIM | ID: wpr-717417

ABSTRACT

Circadian rhythms are driven by circadian oscillators, and these rhythms result in the biological phenomenon of 24-h oscillations. Previous studies suggest that learning and memory are affected by circadian rhythms. One of the genes responsible for generating the circadian rhythm is Rev-erbα. The REV-ERBα protein is a nuclear receptor that acts as a transcriptional repressor, and is a core component of the circadian clock. However, the role of REV-ERBα in neurophysiological processes in the hippocampus has not been characterized yet. In this study, we examined the time-dependent role of REV-ERBα in hippocampal synaptic plasticity using Rev-erbα KO mice. The KO mice lacking REV-ERBα displayed abnormal NMDAR-dependent synaptic potentiation (E-LTP) at CT12~CT14 (subjective night) when compared to their wild-type littermates. However, Rev-erbα KO mice exhibited normal E-LTP at CT0~CT2 (subjective day). We also found that the Rev-erbα KO mice had intact late LTP (L-LTP) at both subjective day and night. Taken together, these results provide evidence that REV-ERBα is critical for hippocampal E-LTP during the dark period.


Subject(s)
Animals , Mice , Biological Phenomena , Circadian Clocks , Circadian Rhythm , Hippocampus , Learning , Long-Term Potentiation , Memory , Neuronal Plasticity
16.
Biomolecules & Therapeutics ; : 358-367, 2018.
Article in English | WPRIM | ID: wpr-715619

ABSTRACT

Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS.


Subject(s)
Brain , Central Nervous System , Circadian Clocks , Circadian Rhythm , Depression , Hypothalamus , Mesencephalon , Neurotransmitter Agents , Prosencephalon , Suprachiasmatic Nucleus
17.
São Paulo; s.n; s.n; 2018. 160 p. tab, ilus, graf.
Thesis in Portuguese | LILACS | ID: biblio-909532

ABSTRACT

Relógios endógenos controlam grande parte de processos biológicos através de osciladores bioquímicos que coordenam a sinalização de pistas ambientais até vias metabólicas, permitindo a percepção do tempo e adaptação a mudanças rítmicas. Comportamentos cíclicos diários foram primordialmente descritos em plantas e, mais recentemente, têm fornecido informações valiosas sobre os ciclos de retroalimentação da transcrição e tradução de genes que controlam estes osciladores. O florescimento é um exemplo bem conhecido da importância da percepção do comprimento do dia através do relógio, processo intimamente regulado por fotorreceptores e pelos genes centrais e periféricos do relógio biológico. Em organismos multicelulares há uma combinação específica de genes mais expressa em cada tecido, podendo ter funções, fases e períodos diferentes, o que aumenta a complexidade desse mecanismo. Devido a isso, tem-se buscado modelos alternativos mais simples dentro dos eucariotos fotossintetizantes relacionados às plantas terrestres. Modelos simplificados facilitam, por exemplo, a avaliação da combinação de fatores que induzem o estresse e como o relógio biológico se altera, permitindo a antecipação de mudanças ambientais e sincronização da fisiologia com o meio ambiente. Neste trabalho, verificou-se como o relógio circadiano se ajusta ao estresse em 3 diferentes modelos: Gracilaria tenuistipitata (Rhodophyta), Ostreococcus tauri (Chlorophyta) e Saccharum sp (Embryophyta). Para isso, estabeleceu-se em G. tenuistipitata métodos para avaliação de crescimento e da fluorescência da clorofila de modo automático, comprovando da existência de ritmos circadianos. Além disso, após padronização de genes de referência para normalização das RT-qPCRs, o gene TRX ficou superexpresso durante a primeira hora após o déficit hídrico. Já em O. tauri, onde os genes centrais do relógio são conhecidos, mudanças na expressão de LOV-HK e TOC1 estão relacionadas com maior crescimento em baixa e alta temperatura, respectivamente. Uma combinação específica de luz, temperatura e salinidade pode ser um importante indutor de eflorescências que reflete mudanças transcricionais no oscilador central, o que pode ser comparado às florescências de plantas terrestres. Já em Saccharum sp tolerante à seca, ritmos de fotossíntese e de expressão de CCA1 sofrem mudanças de fase em suas oscilações e transcritos de HVA-22 e DRP são significativamente mais expressos sob dessecação. Em suma, o estresse em Saccharum sp reseta o relógio, aumentando o período de oscilação da fotossíntese. Em O. tauri induz maior crescimento, mantendo as características do relógio. Não foi possível avaliar o efeito do estresse no relógio de G. tenuistipitata, mas ferramentas foram desenvolvidas visando este objetivo. Estudos de respostas do relógio podem fornecer informações valiosas para o entendimento da reprodução e crescimento de organismos com elevado potencial de aplicações biotecnológicas


Endogenous clocks control a large range of biological processes through biochemical oscillators that coordinate the signaling of environmental cues to metabolic pathways, allowing the perception of time and adjust to rhythmic changes. Cyclical daily behaviors were first noticed in plants and, more recently, revealed information about the transcriptional-translational feedback loops of genes that control these oscillators. Flowering is a well-known process where the perception of day length by the clock is intimately regulated by photoreceptors and by the central and peripheric genes of the biological clock. Multicellular organisms have a tissue-specific combination of expressed clock genes that may have different phase and period, increasing the complexity of this mechanism. Due to this reason, alternative models have been proposed for land plants-related photosynthetic eukaryotes. New models can simplify, for example, which combination of factors induce stress and how the biological clock is altered, allowing the anticipation of environmental changes and synchronization of physiology and environmental factors. This work aimed to verify how the biological clock adjusts to different kinds of stresses in 3 species: Gracilaria tenuistipitata (Rhodophyta), Ostreococcus tauri (Chlorophyta) and Saccharum sp (Embryophyta). Automated measurement techniques for growth rate and photosynthesis were stablished for the red alga. This alga also showed, after establishment of reference genes for RT-qPCRs normalization, an overexpression of TRX during the first hour under water deficit. In O. tauri, where the central clock genes are known, changes in LOV-HK and TOC1 gene expression are related to a higher growth rate under low and high temperatures, respectively. Besides, a specific combination of light, temperature and salinity can be an important trigger of seasonal blooms that causes important transcriptional changes at the central oscillator, what is similar to land plants. In Saccharum sp tolerant to drought, photosynthesis rhythms and CCA1 expression change their phase under simulated water deficit and drought responsive transcripts like HVA-22 and DRP are significantly up-regulated. In short, stress resets the clock in Saccharum sp, increasing the period of photosynthesis oscillation. In O.tauri, it induces a higher growth, keeping clock features. It was not possible to verify clock responses to stress in G.tenuistipitata, but methods to do so were stablished. The biological clock responses to stress can provide invaluable information for the better understanding about the growth and reproduction of organisms with a high biotechnological potential


Subject(s)
Circadian Clocks , Eukaryota/classification , Stress, Psychological/pathology , Dehydration/classification , Diagnostic Imaging/methods , Gracilaria , Photosynthesis , Saccharum
20.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 39(2): 183-186, Apr.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-844195

ABSTRACT

Objective: To assess the interaction of chronotype with anxiety in patients with chronic primary insomnia. Methods: Sixty-four patients (50 women) with mean age 43.9±8.1 years were investigated with the Horne and Östberg Morningness-Eveningness Questionnaire (MEQ) and State-Trait Anxiety Inventory (STAI). Results: Significant negative correlations of chronotype-MEQ score with STAI state-anxiety (r = -0.40, p < 0.05), STAI trait-anxiety (r = -0.40, p < 0.05), and STAI pre-sleep state anxiety (r = -0.30, p < 0.05) were observed. Eveningness preference was associated with higher trait, state, and pre-sleep state anxiety. Conclusions: These results suggest that chronotype may be an important parameter to identifying the origin and significance of a vicious anxiety-insomnia-depression cycle in patients with chronic primary insomnia.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Anxiety Disorders/physiopathology , Circadian Rhythm/physiology , Circadian Clocks/physiology , Sleep Initiation and Maintenance Disorders/physiopathology , Sleep Initiation and Maintenance Disorders/psychology , Anxiety Disorders/complications , Psychiatric Status Rating Scales , Reference Values , Time Factors , Chronic Disease , Statistics, Nonparametric , Self Report , Sleep Initiation and Maintenance Disorders/etiology
SELECTION OF CITATIONS
SEARCH DETAIL